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Abstract. With recent advancements of multi- or many-objective optimization
algorithms, researchers and decision-makers are increasingly faced with the dilemma
of choosing the best algorithm to solve their problems. In this paper, we propose a
simple hybridization of population-based multi- or many-objective optimization
algorithms called fusion of non-dominated fronts using reference points (FNFR) to
gain combined benefits of several algorithms. FNFR combines solutions from
multiple optimization algorithms during or after several runs and extracts well-distrib-
uted solutions from a large set of non-dominated solutions using predefined struc-
tured reference points or user-defined reference points. The proposed FNFR is applied
to non-dominated solutions obtained by the Generalized Differential Evolution
Generation 3 (GDE3), Speed-constrained Multi-objective Particle Swarm Optimiza-
tion (SMPSO), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2) on seven
unconstrained many-objective test problems with three to ten objectives. Experi-
mental results show FNFR is an effective way for combining and extracting (fusion)
of well-distributed non-dominated solutions among a large set of solutions. In fact, the
proposed method is a solution-level hybridization approach. FNFR showed prom-
ising results when selecting well-distributed solutions around a specific region of
interest.

1 Introduction

For the last three decades, there has been a number multi- and many-objective algorithms
capable of solving complex problems. However, despite recent advancements, researchers
and decision-makers are increasingly faced with the difficulty of choosing an appropriate
algorithm capable of solving their problem effectively. This is due to a well-established “no-
free-lunch” theorem that an algorithm that may have proven to give good performance on a
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particular class of problems may not provide the same level of performance on other classes
of problems. As a result many researchers have shifted their focus in developing powerful
problem-specific or instance-specific algorithms. One way to accomplish this task is the
hybridizations of optimization algorithms where new algorithms are developed by
combining one optimization algorithm with another, by combining a standard optimization
algorithm with mathematical operators, or incorporating evolutionary operators (selection,
mutation, and crossover) into non-evolutionary optimization algorithms [1]. The main hope
is that hybridization combines the desirable properties of different approaches so that the
hybrid algorithm exhibits improved exploration and exploitation capabilities.

For example, Mirjalili and Hashim [2] proposed a hybrid population-based algorithm
called PSOGS A by combining Particle Swarm Optimization (PSO) and Gravitational Search
Algorithm (GSA). Their main aim was to integrate the exploitation ability of PSO with the
exploration ability of GSA to synthesize both algorithms’ strength. Similarly El-hossini
et al. [3] proposed three hybrid algorithms based on the PSO and the strength Pareto evolu-
tionary algorithm 2 (SPEA?2) to solve multi-objective optimization problems. In all of these
algorithms, strength Pareto fitness assignment is used to maintain an external archive; and
the three algorithms are developed by alternating the evolutionary and PSO processes in
different order. Experimental results showed that the proposed hybrid PSO algorithms have
comparable performance to SPEA2. Also, Tang and Wang [4] proposed a novel hybrid
multi-objective evolutionary algorithm (HMOEA) for real-valued multi-objective problems
by incorporating the concepts of personal best and global best in PSO and evolutionary
operators (multiple crossovers) to improve the robustness of evolutionary algorithms to solve
variant kinds of optimization problems.

Wangetal. [5] proposed a hybrid evolutionary algorithm based on different crossover
and mutation strategies combined with adaptive constrained-handling technique to deal
with numerical and engineering constrained optimization problems. Zavoianu et al. [6]
proposed a hybrid and adaptive co-evolutionary optimization method that can efficiently
solve a wide range of multi-objective optimization problems. Their approach combines
Pareto-based selection for survival, differential evolution’s crossover and mutation
operators, and decomposition-based strategies. Recently, an ensemble strategy was
proposed to benefit from both the availability of diverse approaches and to overcome the
difficulty of fine tuning associated parameters. Some of these work include ensemble of
€ parameter values and an ensemble of external archives in a multi-objective PSO algo-
rithm [7], ensemble of constraint handling methods to tackle constrained multi-objective
optimization problems [8], and ensemble of different neighborhood sizes in multi-objec-
tive evolutionary algorithm based on decomposition (MOEA/D) with online self-adap-
tation [9].

Tan et al. [10] proposed a hybrid multi-objective evolutionary algorithm (HMOEA)
featured with specialized genetic operators, variable-length representation and local search
heuristic to find the Pareto optimal routing solutions for the truck and trailer vehicle routing
problem (TTVRP). Experimental results showed the HMOEA is effective in solving a
multi-objective and multi-modal combinatorial optimization problems. Similarly, Xia and
Wu [11] proposed a hybrid multi-objective algorithm by combining the PSO algorithm for
its explorative power and simulated annealing (SA) for its exploitations to solve flexible job-
shop scheduling problem (FJSP). Tavakkoli-Moghaddam et al. [12] also proposed a hybrid
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multi-objective algorithm based on the features of a biological immune system (IS) and
bacterial optimization (BO) to find Pareto optimal solutions for flow shop scheduling
problem. Their algorithm uses the clonal selection principle in IS with highest affinity anti-
bodies and criterion distinguishing between antigens and antibodies in BO for Pareto domi-
nance relationship among solutions. Karthikeyan et al. [13] proposed a hybrid discrete
firefly algorithm (HDFA) to solve the multi-objective FISP problem. They have combined
the discrete firefly algorithm with local search (LS) method to enhance the searching accu-
racy and information sharing among fireflies.

In the effort of developing a powerful general-purpose hybridization framework,
propose a novel hybridization of population-based multi- or many-objective optimization
algorithms called fusion of non-dominated fronts using reference points (FNFR), to gain
combined benefit of several algorithms in solution-level. The FNFR method uses well-
structured or user supplied reference points to extract targeted solutions from non-domi-
nated solutions gathered during several runs of any multi-objective optimization algorithms
(MOOA).

The rest of the paper is organized as follows. Section 2 outlines the FNFR framework in
detail. Section 3 presents experimental studies conducted to verify the efficacy the proposed
algorithm on 3- to 10-objective benchmark test problems. Concluding remarks are provided
in Sect. 4.

2 Proposed Method: Fusion of Non-dominated Solutions Using
Reference Points

Generally speaking, hybridization of optimization algorithms can be grouped into two main
components. The first includes hybridization of algorithms during the optimization process
and the second being the hybridization of the algorithms after the optimization process.
Hybridization during the optimization process can also further be grouped into two main
categories: algorithms created by combining multiple metaheuristics and algorithms created
by combining a metaheuristic algorithm with multiple mathematical operators and/or evolu-
tionary operators.

In this section, we present a novel hybridization technique called Fusion of Non-domi-
nated Fronts using Reference points (FNFR) capable of extracting targeted solutions from a
set of non-dominated results collected during several runs of multiple optimization algo-
rithms. The skeleton for the FNFR hybridization procedure is shown as a flowchart in
Fig. 1. The FNFR procedure consists of three modules:

Problem Formulation. In this module, the problem to be optimized is formulated along
with the determination of various applicable algorithms that maybe included in the opti-
mization process.

Approximate Front Evaluation. In this module, the selection process of applicable
algorithms are narrowed to the most relevant set for solving the problem. At this point
the number of iterations to run for each algorithm is determined by the user, with the
foresight of generating enough solutions for a meaningful data set. Although any algo-
rithm can be selected and combined together in this framework, we recommend
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Fig. 1. Flowchart illustrating the FRFR procedure, where U indicate the extraction of non-
dominated solutions from the union of two non-dominated solution sets.

combining algorithms complimentary to each other, that is, algorithms addressing
different constructs to achieve a good representative solutions set on the entire Pareto-
optimal front (PF). Note that each algorithm is run independently with the option of
running each algorithm in parallel or serial. In every run, the found approximate non-
dominated front is combined with previously obtained front to create new non-domi-
nated front by removing dominated solutions from the combined front. This step is a
crucial step, because we need a well-represented set of solutions on the entire PF before
extracting preferred solutions from this set.
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Fusion and Extraction of Targeted Solutions. In this module, targeted solutions are
extracted from the union of non-dominated solutions obtained from several runs of
multiple algorithms using a procedure similar to reference-point-based non-dominated
sorting algorithm (NSGA-III) [14]. Given a union of M-objective non-dominated
approximate front obtained from the algorithms, the first step is to combine these results
and remove dominated solutions (FNDS = NDS,UNDS,U --- UNDS, where U indicate
the extraction of non-dominated solutions from the union of two non-dominated solution
sets). In the next step, a structured or target predefined set of reference points are selected
on a normalized hyper-plane. In the case of structured reference points, one can use the
Das and Dennis’ [15] procedure to create well-distributed structured reference points.
However, if the reference points are targeted points selected by the decision-maker, then
M extreme points, one at each objective axis
{z, =(1,0,0,...0),z, =(0,1,0,...0),...2,, = (0,0, ..., 1)}, are needed to determine
the right normalized hyper-plane. Thereafter, we construct an ideal point by finding the
minimum value for each objective function from the fusion of non-dominated solutions
extracted in the previous step (FNDS). Then, we translate each solution in FNDS by the
ideal point and find M extreme points from these translated solutions. These extreme
points are used to construct M-dimensional linear hyper-plane. Special care is required
when finding extreme points so that we construct the proper hyper-plane and be able to
extract targeted solutions. We recommend verifying obtained extreme points by finding
the individual optimum of each objective function to ensure an appropriate hyper-plane
is constructed before moving to the next step. Thereafter, each solution is associated
with a reference point by using the shortest perpendicular distance (d) of each solution
with a reference line created by joining the reference point with the origin. Finally, for
each reference point, we select a solution with the minimum d among solutions associ-
ated to each reference line.

The main advantages of the FNFR framework are: (1) we get the full benefit of all
algorithms involved in the optimization process, (2) we don’t need to investigate how and
when to combine merits of different algorithms, (3) many algorithms can be used without
the need of extra parameter tuning, and (4) we can run all algorithms in the optimization
process in parallel. However, the FNFR framework requires a great amount of time commit-
ment to run all algorithms in the optimization process (i.e., higher time complexity). As
result a trade-off occurs from the onset when selecting the number of algorithms to use for
the FNFR framework.

3 Experimental Setup and Results

In this section, we describe the optimization algorithms, parameter settings, used test prob-
lems, and simulation results of the proposed framework on 3- to 10-objective benchmark
test problems.
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3.1 Algorithms

In order to assess the capability of the proposed FNFR hybridization framework, we have
considered three MOOA s that have considerable differences in their fitness assignment and
diversity mechanism to gain combined benefits and achieve a good representative solutions
set on the entire PF. These MOOAs are: the Generalized Differential Evolution Generation
3 (GDE3), Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO), and
the Strength Pareto Evolutionary Algorithm 2 (SPEA2).

Generalized Differential Evolution Generation 3 (GDE3). GDE3 [16] is an extension
of Differential Evolution (DE) for global optimization with an arbitrary number of
objectives and constraints (Kukkonen & Lampinen, [16]). GDE3 with a single objective
and without constraint is similar to the original DE. GDE3 improves earlier GDE
versions in the case of multi-objective problems by giving better distributed solutions.
GDES3 uses a growing population and non-dominated sorting with pruning of non-
dominated solutions to decrease the population size at the end of each generation. This
improves obtained diversity and makes the method more stable for the selection of
control parameter values.

Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). SMPSO
[17] is similar to Particle Swarm Optimization (PSO) algorithm which inspired by the
social behavior of birds flocking to find food. In PSO, particles move in the search space
in a cooperative manner where movements are performed by the velocity operator. The
velocity operator is guided by a local and a social behaviour of swarm. SMPSO uses the
concept of crowding distance to filter out leader solutions when the leaders archive is
full, mutation operator accelerates the convergence of the swarm and it incorporates a
mechanism to limit the velocity of the particles which can result an erratic movements
of particles towards the upper and lower position limits of particles.

Strength Pareto Evolutionary Algorithm 2 (SPEA2). SPEA2 [18]is an extension SPEA
for solving multi-objective optimization problems. Both SPEA and SPEA?2 use an
external archive to store previously found non-dominated solutions. In SPEA, the
external archive maintained based on each individual’s strength in which the strength
of an individual is measured according to the number of solutions this individual domi-
nates. In every generation the fitness of each member of the current population is
computed according to the strengths (closeness to the true PF and distribution of solu-
tions) of all external non-dominated solutions that dominate it. On the other hand, in
SPEAZ2, the external archive is maintained according to each individual’s strength not
only by the number of individuals that dominate it but also the number of individuals
by which it is dominated. Moreover, SPEA2 uses a nearest neighbor density estimation
method to guide the search process efficiently and it preserves boundary solutions.

3.2 Test Problems

In order to test the quality of the proposed algorithm, we have used seven many-objective
benchmark test problems. The first set of test problems are the DTLZ (DTLZ1 — DTLZA4,
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Convex DTLZ2) introduced by Deb et al. [19]. The number of variables are (M + k — 1),
where M is the number of objectives and k = 5 for DTLZ1, while k = 10 for DTLZ2,
Convex DTLZ2, DTLZ3, and DTLZA. The corresponding PFs lie in f; € [0, 0.5] for the
DTLZ1 problem and in f; € [0, 1] for other DTLZ problems. The DTLZ1 problem has a
linear PF, Convex DTLZ2 has convex PF, and DTLZ2 to DTLZ4 problems have concave
PFs.

The second set of test problems utilized in this study are WFG1 and WFG?2 test
problems introduced by Huband et al. [20]. The number of position parameters is set to
k = M — 1, and the number of distance parameters is set to/ = 3 for all dimensions. The
WFGT1 has a mixed PF and WFG2 problem has a convex, disconnected PF. The PFs for
WEG test problems used in this work lie in f; € [0, 2i].

3.3 Parameters Setting

Here, we describe the parameter setting used in the three sample algorithms used in the
FNFR method. The GDE3 algorithm has two control parameters: mutation (¥ = (.5) and
crossover (CR = 0.1) probabilities. The SMPSO algorithm has three control parameters:
external archive size (same as population size), Polynomial mutation (p,, = 1/n, where
n is the number of variables) and Mutation Distribution Index (y,, = 20). The SPEA2
algorithm has five control parameters: external archive size (same as population size),
SBX probability (p, = 0.9), Polynomial mutation (p,, = 1/n, where n is the number of
variables), Crossover Distribution Index (#. = 20), and Mutation Distribution Index
(1,, = 20). In order to maintain a consistent and fair comparison, the optimal parameter
settings reported in [16—18] are used. Table 1 presents the number of reference points (H),
the population size (N), and the number of inner and outer divisions used for different
dimensions of test problems. In this study we have utilized the Das and Dennis’ [15]
procedure to create structured reference points used in the FNFR method.

Table 1. Number of reference points and population sizes used in this study.

Number of objectives (M) | Divisions Reference points (H) Population size (N)
Outer | Inner
3 12 0 91 92
6 0 210 212
8 3 2 156 156
10 3 2 275 276

To evaluate the performance of the proposed fusion technique, first we have run each
algorithm 20 times independently and the best, the worst, and the median results of each
algorithm are recorded. For the performance measure, we have used the inverse genera-
tional distance (IGD) metric, which is capable of measuring the convergence and the
diversity of the obtained Pareto-optimal solutions. The IGD measure has been predomi-
nantly used to evaluate the performance of evolutionary many-objective problems [21, 22].
In this study, the reference Pareto front utilized in the IGD metric is constructed by joining
all results from all runs, and then selecting non-dominated solutions from this set.
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(a) GDE3 (b) Fusion of GDE3

(¢) SMPSO (d) Fusion of SMPSO

(e) SPEA2 (f)  Fusion of SPEA2

Fig. 2. The trade-off plots of obtained solutions by the GDE3, SMPSO and SPEA2 algorithms
for three-objective WFGI test problem. The grey dotted background indicated the non-dominated
solution assembled during 20 runs of the GDE3 ((a) and (b)), SMPSO ((c) and (d)), and SPEA2
((e) and (f)). The black dots in (a), (c), and (e) indicate the best solution set obtained by each
algorithm based on the IGD metric. The black dots in (b), (d), and (f) show well-distributed
solutions extracted from the non-dominated solutions assembled in 20 runs of each algorithm.

3.4 Experimental Results and Discussion

In this section, we describe experiments carried out to investigate the effectiveness of the
FNFR method. Overall we have conducted three sets of experiments. The first experiment
compares the quality of solutions obtained by each algorithm and the FNFR scheme using
scatter plots (for three-objective problems) and 3D-RadVis [23] (for many-objective prob-
lems, M > 3). The second set of experiments involve numerical analysis to evaluate the
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Fig. 3. The trade-off plots of solutions obtained by all algorithms for three-objective DTLZ1 and
WEFG1 test problems. The grey dotted background indicate non-dominated solutions assembled
during 20 runs of the GDE3, SMPSO, and SPEA2 algorithms and the black dots illustrate well-
distributed solutions extracted from these solutions using the proposed FNFR scheme.

quality of solutions obtained by each algorithm and the FNFR method. The last set of
experiments involve extracting preferred solutions around a specific region.

Visual Analysis of Solutions obtained by each Algorithm against the FNFR Method.
Here we investigate solutions obtained by the three algorithms and solutions extracted
by the FNRF method. We run each algorithm 20 times and assembled the non-dominated
fronts from each run by removing dominated solution after combining non-dominated
solutions from each run. Figure 2 show trade-off plots of solutions obtained by the
GDE3, SMPSO, and SPEA?2 for 3-objective WFG1 test problem. Figure 3 illustrates
trade-off plots of solutions collectively obtained by the GDE3, SMPSO, and SPEA2 and
solutions extracted by the FNFR procedure for 3-objective DTLZ1 and WFG1 and test
problems.

The black dots in Fig. 2(a), (c), and (e) plots illustrate best solutions (based on the IGD
metric) found by the GDE, SMPSO, and SPEA?2 in 20 runs for 3-objective WFGI test
problem. From these plots we can see that none of the algorithms are able to find well-
converged and well-distributed set of solutions in a single run. However, when we consider
all non-dominated solutions collected during 20 runs (grey dots) by each algorithm, we see
that they are able to find “satisfactory” solutions on the PF. This analysis indicate that the
algorithms used in this experiment cannot consistently find well-distributed and well-
converged solutions a single run. This phenomenon is in agreement with the no-free-lunch
theorem.

The black dots in Fig. 2(b), (d), and (f) plots show well-distributed and well-converged
solution extracted using the FNFR method from the non-dominated solutions gathered by
each algorithm during the 20 runs of 3-objective WFG1 test problem. It can be seen that the
FNFR method is an effective way of collecting and extracting well-distributed solutions
after the optimization process is complete. We also observe that solutions extracted by the
FNFR method are better than the best solution set found by any of the algorithms in a
single run. Moreover, Fig. 3 shows trade-off plots of non-dominated solutions obtained by
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Fig. 4. 3D-RadVis plots of obtained solutions by GDE3, SMPSO and SPEA2 algorithms for
five-objective convex DTLZ2 test problem. The surface for all plots are constructed from
numerically generated PF. The black dots in (a), (c), and (e) indicate the best solution set obtained
by each algorithm based on the IGD metric. The black dots in (b), (d), and (f) show well-distributed
solutions extracted from the non-dominated solutions assembled in 20 runs of all algorithms using
the FNFR method.

all algorithms for three-objective DTLZ1 and WFGI test problems. The grey dotted back-
ground indicate the non-dominated solutions collected during 20 runs of GDE3, SMPSO,
and SPEA?2 algorithms and the black dots illustrate well-distributed solutions extracted from
these solutions using the FNFR method.

The 3D-RadVis plots in Fig. 4 show the best non-dominated solutions obtained by
GDE3, SMPSO, and SPEA?2 algorithms (left plots) and solutions extracted using the FNFR
method (right plots) for 5-objective convex DTLZ?2 test problem. As it can be seen that as
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the number of objective increases the quality of solutions found by each algorithm start to
degrade in terms of solution diversity and accuracy. However, in Figs. 3 and 5, we see that
these algorithms collectively are able to find well-distributed solutions on the entire PF and
we are able to extract uniformly distributed non-dominated solutions using the FNFR
method among solutions gathered during 20 runs of multiple algorithms.
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Fig. 5. 3D-RadVis plot of non-dominated solutions extracted using the proposed FNFR method.
The black dots illustrate solutions extracted using the proposed scheme from a large set of non-
dominated solutions generated by the GDE3, SMPSO, and SPEA?2 algorithms in 20 runs.

Numerical Analysis of Solutions obtained by each Algorithm against the FNFR Method.

Here, we investigate the performance of GDE3, SMPSO, and SPEA2 on seven bench-
mark test problems with 3-, 5-, 8-, and 10-objectives. Table 2 provides the best, median,
worst IGD values for GDE3, SMPSO, and SPEA2 on 3- and 5-objective DTLZ1, convex
DTLZ2 and WFGT1 test problems in 20 runs. In all instances the solution set obtained
through the FNFR method form each algorithm have better IGD values than the best
IGD values attained by a single run. Moreover, the IGD value of the solution set extracted
by the FNFR method from a large set of solutions collected during each algorithm’s run
is also better than the three above-mentioned IGD values. The grey shades in Table 2
indicate the IGD values of solutions extracted by the FNFR method. When it comes to
higher dimensional test problems, the FNFR scheme further proved its efficacy when
comparing the IGD values of solutions extracted by the FNFR method against the best
IGD values obtained by each algorithm in a single run. Table 3 shows the best, median,
and worst IGD values for GDE3 and SMPSO algorithms against the IGD value of a set
solutions extracted by the FNFR method on 8- and 10-objective DTLZ3, convex DTLZA4,
and WFG?2 test problems.
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Table 2. Best, median, and worst IGD values for GDE3, SMPSO, and SPEA?2 algorithms against
the IGD value of solutions extracted by the FNFR method on 3- and 5-objective DTLZ1, convex
DTLZ2, and WFG1 test problems.

DTLZ1 Convex DTLZ2 WFG1
M 3 5 3 5 3 5

Max Generation 400 600 400 600 400 600

GDE3 Best 7.43E-04 1.23E-03 7.09E-04 | 5.96E-04 | 1.23E-03 | 8.24E-04
GDE3 Median 8.10E-04 1.27E-03 7.70E-04 | 6.23E-04 | 1.40E-03 | 9.23E-04
GDE3 Worst 8.43E-03 1.31E-03 8.48E-04 | 7.09E-04 | 2.36E-03 | 1.26E-03
GDE3 Fusion 5.68E-04 9.27E-04 6.94E-04 | 496E-04 | 1.96E-04 | 7.49E-04
SMPSO Best 9.26E-04 2.21E-03 8.92E-04 | 1.29E-03 | 7.45E-03 | 6.04E-03
SMPSO Median 9.83E-04 2.48E-03 1.00E-03 | 1.83E-03 | 7.94E-03 | 6.44E-03
SMPSO Worst 1.05E-03 2.97E-03 1.15E-03 | 2.71E-03 | 8.11E-03 | 6.74E-03
SMPSO Fusion 6.99E-04 1.75E-03 8.27E-04 | 1.05E-03 | 6.41E-03 | 5.02E-03
SPEA2 Best 6.16E-04 2.23E-01 5.79E-04 | 2.19E-02 | 8.13E-04 | 7.48E-04
SPEA2 Median 6.35E-04 6.38E-01 6.03E-04 | 3.16E-02 | 1.04E-03 | 1.15E-03
SPEA2 Worst 6.90E-04 1.03E+00 6.39E-04 | 4.02E-02 | 3.56E-03 | 1.44E-03
SPEA2 Fusion 5.63E-04 2.23E-01 5.39E-04 | 2.48E-02 | 6.05E-04 | 8.21E-04
Overall Fusion 4.54E-04 8.92E-04 7.00E-04 | 4.21E-04 | 1.42E-04 | 7.64E-04

Table 3. Best, median, and worst IGD values for GDE3, SMPSO, and SPEA?2 algorithms against
the IGD value of solutions extracted by the FNFR method on 8- and 10-objective DTLZ3, convex
DTLZ4, and WFG?2 test problems.

DTLZ3 DTLZA4 WFG2
M 8 10 8 10 8 10
GDE3 Best 1.26E-03 | 9.30E-04 | 2.83E-03 | 2.35E-03 | 2.23E-03 | 1.84E-03

GDE3 Median | 2.95E-03 | 1.24E-03 | 2.97E-03 | 2.43E-03 | 2.64E-03 | 2.02E-03
GDE3 Worst | 7.59E-03 | 1.42E-03 | 3.04E-03 | 2.53E-03 | 3.26E-03 | 2.24E-03
GDE3 Fusion | 1.08E-03 | 7.10E-04 | 3.02E-03 | 2.40E-03 | 2.05E-03 | 1.71E-03
SMPSO Best | 3.90E-03 | 1.11E-03 | 2.85E-03 | 2.59E-03 | 2.73E-03 | 1.97E-03
SMPSO Median | 8.88E-03 | 2.05E-03 | 3.95E-03 | 2.85E-03 | 3.12E-03 | 2.18E-03
SMPSO Worst | 8.77E-03 | 1.98E-03 | 3.67E-03 | 3.28E-03 | 2.42E-03 | 1.93E-03
SMPSO Fusion | 3.77E-03 | 1.83E-03 | 3.01E-03 | 2.32E-03 | 2.55E-03 | 1.80E-03
Overall Fusion | 3.34E-03 | 1.07E-03 | 1.99E-03 | 2.25E-03 | 2.09E-03 | 1.51E-03

Visual Analysis of Preferred Solutions Found by the FNFR Method. Here we investi-
gate the effectiveness of the proposed FNFR method when dealing with extracting solu-
tions close to preferred region. In a practical multi- of many-objective optimization
problems decision-makers may be interested in visualizing (when possible) the entire
PF before selecting the one or more solutions for further investigation. In such scenario,
the FNFR scheme is an effective tool to construct the entire PF and select Pareto-optimal
points that are close to the supplied reference points. Figure 6 show preferred solutions
extracted using the proposed FNFR method. The grey dotted background indicates non-
dominated solutions obtained by the GDE3, SMPSO, and SPEA?2 algorithms in 20 runs
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and the black dots illustrate preferred solutions extracted from these solutions using the
proposed scheme.

(¢) Convex DTLZ2 (d) WEFG2

Fig. 6. Preferred solutions extracted using the proposed FNFR method. The grey dotted back-
ground indicate non-dominated solutions obtained by the GDE3, SMPSO, and SPEA?2 algorithms
in 20 runs and the black dots illustrate preferred solutions extracted from these solutions using
the proposed FNFR approach.

4 Concluding Remarks

In this paper, we proposed a novel hybridization of population-based metaheuristic algo-
rithms called fusion of non-dominated fronts using reference points (FNFR) to gain
combined benefit of several algorithms. The hybridization step in FNFR occurs after the
optimization process of multiple runs of several algorithms. In every run, FNFR assembles
and constructs the entire Pareto-optimal front from a large set of non-dominated solutions
found using multiple algorithms. This step is crucial because no single algorithm is capable
of producing well-distributed solutions for all types of problems all the time. Thereafter,
FNFR uses predefined structured reference points or user selected reference points to extract
preferred solutions from this set.

Experimental results showed the effectiveness of the proposed FNFR scheme with
numerical experiments by considering three widely used optimization algorithms, GDE3,
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SMPSO, and SPEA2. The FNFR method is able to extract well-distributed solutions in a
specific region of interest among thousands of non-dominated solutions collected after every
run of multiple algorithms. Therefore the FNFR scheme can effectively be used by deci-
sion-makers to select and examine preferred solutions among a large set of solution which
can be astronomically difficult to manage. In future, we would like to extend this study
further by applying the FNFR scheme during the optimization process so that preferred
solutions can be extracted and inserted back to the current population to boost the search
process.
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